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LETTER TO THE EDITOR 

Modulated kicks approximation in non-integrable classical and 
quantum systems 

Karol Zyczkowski and Jakub Zakrzewskit 
Institute of Physics, Jagiellonian University, ul Reymonta 4, 30-059 Krakbw, Poland 

Received 18 December 1987 

Abstract. Time-dependent harmonic perturbation in dynamical systems is frequently 
approximated by a sequence of infinitely short pulses (so-called kicks) of alternating sign. 
In order to improve this approximation we increase the number of kicks per perturbation 
period. The validity of this method is tested numerically on an exemplary classical system: 
a particle in the Rosen-Morse potential well, driven by an external harmonic perturbation. 

Dynamical systems with an unrealistic perturbation, in the form of a sequence of 
infinitely short pulses, have recently drawn a lot of attention. Such an approach greatly 
simplifies the analysis of a system, since the time evolution can be described in terms 
of the appropriate classical (or quantum) map. The well known kicked rotator model 
was investigated in the study of classical [ l ,  21 and quantum [3-51 chaos. 

In the dynamical models of interaction of atoms with strong electromagnetic fields 
[6-91 the sinusoidal changes of field were simulated by a train of kicks of alternating 
sign. Not much is yet known about the validity of such an approximation. Leopold 
and Richards [6], however, reported significant differences between results obtained 
with impulsive and continuous perturbation. 

In order to improve the alternated kicks approximation (AKA)  and simulate the 
continuous perturbation in a better way we suggest increasing the number of pulses 
per wave period. In this letter the modulated kicks approximation ( M K A )  is defined 
and tested on an exemplary dynamical model. A correspondence is shown between 
the approximation of a continuous perturbation in a physical system by a train of 
infinitely short pulses and the numerical methods of solving the non-linear differential 
equations by the discretisation of time. 

Consider an arbitrary smooth function f (  t )  with period T. Let us define a sequence 
of distributions j N  

N - '  (iT) ( iT) 
f , , ( r ) : = A N  f - 6 t - -  

i =O 

where N is a positive integer and the normalisation constant A N  is equal to 

in order to keep the integral constant 

[arm dt  = job) dt. 

t Temporary address: Chemistry Department, University of South California, Los Angeles, CA 90089, USA. 
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If the function f(t) changes the sign, the normalisation is to be done separately in 
each interval between roots o f f (  t ) .  Function fN, non-negative in one period only, 
can easily be generalised to 

Let L, denote the distribution corresponding to the continuous function f( t )  and the 
distributions FN correspond to fN ( 1 ) .  The modulated kicks approximation is based 
on the following corollary. 

Corollary 1. In the limit N + w  the series of distributions FN converges pointwise 
to Lf. 

This corollary, proved elsewhere [lo], suggests that the continuous perturbations f( t )  
may be replaced by the impulsive perturbation f N ( f ) ,  provided N is large enough. 
Such an  approximation (called the modulated kicks approximation) can be useful for 
different dynamical systems, since it enables us to write straightforwardly the classical 
(or quantum) map, instead of solving numerically the differential equation. Note that 
the M K A  can also be applied for a generic (non-periodic) perturbation or a periodic 
one multiplied by a slowly varying envelope C( t) .  

In the discussion of the dynamics of a Hamiltonian system, it is convenient to 
express the periodic perturbation in terms of the Fourier series. For an  even function 
f(t) we have 

m = s  m = x  

f(t) = c a, cos(mwt) and f N ( f ) =  c a:cos(mot) 
m=O m=O 

where o = 2 r /  T. The Fourier coefficients a, of the perturbation determine the number 
and  positions of the resonances in the phase space [ 11. From corollary 1 it follows that 

t lm  EN: lim a," = a,. 
N-;o  

It means therefore that for sufficiently large N the structure of resonances in a system 
described by M K A  is similar as in the corresponding system driven by a continuous 
perturbation. 

As an illustration of the modulated kicks approximation we study the case of 
harmonic perturbation: f( t )  = cos(wt). Hence, the definition (3)  is 

f 2 ( t ) = x A 2  c c o s ( i r ) S ( r - i T / 2 + I T )  
, = I  

I , = o  

= ( T / T )  {F( t + lT) - 6[ t + T (  l -:)I} (4) 
I 

where the normalisation constant A2 is equal to T / r .  Application of the function f2 

(and in this case also f4) is thus equivalent to the well known alternated kicks 
approximation. The perturbation fN consists of N kicks per one period, modulated 
by the cosine function f( t) .  Figure 1 shows, in a schematic way, functions f 2 ,  fs, fi6 
and the function fE represented by the sinusoidal wave. 

To check numerically the accuracy of the approximation investigated we analyse 
an  exemplary system: a single particle moving in the one-dimensional Rosen-Morse 
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Figure 1. Schematic sketch of time-dependent perturbation-the harmonic wave represen- 
ted by M K A  with N = 2 (or 4), 8 and 16 kicks per period. In the limit N + cc we recover 
the continuous wave (curve f,). 

potential Vo(x) driven by the harmonic field. This model was recently applied in a 
classical description of the above threshold ionisation [ 113. The Hamiltonian is 

H = H , +  H c  = p 2 / 2 -  U/cOSh2(AX)+ V ~ ( X )  C O S ( W ~ )  ( 5 )  

where the mass of the particle is set to 1; two parameters U and A define the shape 
of the atomic potential Vo(x). The interaction potentia! Vc(x) is equal to Cx, where 
w and C are perturbation frequency and strength respectively. 

The motion of the system remains regular for small values of C and trajectories 
starting inside the potential well are trapped there for ever. For larger perturbation 
strengths the motion becomes chaotic and the particle can leave the potential well. 
This picture corresponds, in our simple model, to ionisation caused by an external field. 

Time evolution of the non-integrable system ( 5 )  can be analysed by standard 
methods of numerical integration. On the other hand, the continuous perturbation in 
( 5 )  can be replaced by the sequence of modulated kicks (3) .  It can be shown [lo] that 
in the limit N+oo the solution given by the classical (or quantum) map fulfills the 
differential equation originating from the system driven by the continuous perturbation. 
The simplest case of this approximation, where the system is driven by the train of 
alternated kicks (AKA) was analysed in [l l] .  To obtain the classical map it is enough 
to solve the equation of motion for the unperturbed system. It is more convenient to 
work in the canonical variables { P ,  01, where P( 1 )  remains constant between the kicks. 
The basic transformation R,, j = 0, . . . , N - 1, consists of two terms: free evolution 
between kicks and infinitely short kicks represented by a change of momentum 
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The full classical map M, which governs the evolution of the system during the 
perturbation period T is obtained as a composition of N transformations R,: 

j = N - l  

M = fl R,. 
J = o  

( 7 )  

In order to obtain the quantum map for the system ana1ogo:s to ( 5 )  we expand 
the wavefunction in the basis of bound and free eigenstates of Ho 

where 

onto 

For example 

k , [ a m ( f ) ] = a m ( r +  T / N ) = C a , ( t ) e x p ( - i E , T / h N ) W ’ , ,  
I 

where the elements of N different matrices of the pulse are equal to 

w’,k = ( m  /exp[ -i Vc (x)  F (  f + j T /  N ) A  jv / h ]I k) j = 0 , 1 ,  . . . ,  N - 1 .  (10) 

In the analogy to lhe  classical map M, the quantum map consists of N elementary 
transformations R,. Applying the appropriate sequence of maps fi, to an arbitrary 
initial state l*(O)) described by set {a,(O), bk(0)} one can study the time evolution of 
the quantum system. To perform a numerical calculation according to the map (9) 
the appropriate energy cut-off in the integral term is necessary, as well as the method 
of discretisation of the continuum [ 9 ] .  In both the classical and quantum calculations 
the computing time grows linearly with the number of kicks per perturbation period. 

In order to check how the different kinds of impulsive perturbation approximate 
the continuous wave in the classical system, we calculated numerically the probability 
that a trajectory will leave the potential well. All initial points were taken randomly 
with the same negative initial energy Eo.  Figure 2 presents the escape probability P 
after 200 perturbation periods (full saturation) against the perturbation strength C. 
Various kinds of perturbation were analysed: the continuous harmonic wave labelled 
as ‘CO’, and impulsive perturbation M K A  with 2, 6, 8 and 16 kicks per wave period. 
The AKA approximation significantly overestimates the probability of escape due to 
interaction with higher harmonics. The impulsive perturbation with larger N approxi- 
mates the harmonic wave much better, and N = 16 M K A  already gives quite accurate 
results. 
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C 

Figure 2. Escape probability P plotted against the field strength C, for parameters of the 
system A = U = 1.0, w = 0.8, E ,  = 0.9 (in atomic units). A number labelling each curve 
indicates the N kicks per period M K A ,  while 'cc' denotes the harmonic wave. The alternating 
kicks perturbation ( N  = 2 curve) does not approximate the continuous wave well, whereas 
the N = 16 M K A  does it much better. 

In conclusion we have presented an effective method of analysis of the time- 
dependent Hamiltonian systems connected to the numerical integration of the equations 
of motion. In other words, the physical background for mathematical methods of 
numerical analyses is shown. We think that the M K A  approximation can be used for 
a wide class of dynamical systems not necessary in the case of harmonic perturbation. 
Moreover, the same method may be applied for quantum models. Instead of solving 
the non-linear, partial Schrodinger equation, the problem reduces to construction of 
the appropriate quantum map. Some properties of the solutions can be found analyti- 
cally by investigation of the map in the limit N + CO. 

We gratefully acknowledge fruitful discussions with J Mostowski and K Rzgzewski. 
We also thank K Holly, who reminded us what the distributions are. This work was 
supported by Polish grant no CPBP 01.07. 
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